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1. Introduction

Data Envelopment Analysis (DEA) is a relatively new ‘‘data
oriented’’ approach for the evaluation of the performance of a set
of entities called Decision Making Units (DMUs), which transform
multiple inputs into multiple outputs. The DEA research started by
publication of the essential paper (Charnes, Cooper, & Rhodes,
1978). The definition of DMUs is very generic and flexible. Recent
years have seen a great variety of applications of DEA models for
performance and efficiency evaluation of many different kinds of
entities engaged in many different activities and contexts, in many
different countries (Akçay, Ertek, & Büyüközkan, 2012;Bayraktar,
Tatoglu, Turkyilmaz, Delen, & Zaim, 2012;Charles & Zegarra,
2014;Cooper, Seiford, & Tone, 1999;Emrouznejad, Parker, &
Tavares, 2008; Rezaei, Ortt, & Scholten, 2012;Wanke & Barros, 2014).

As it is known in DEA, the observed DMUs define the production
possibility set (PPS). The PPS is a polyhedral convex set whose ver-
tices correspond to the efficient DMUs. The DEA models find the
projection of the inefficient DMUs on the efficient frontier of the
PPS. That is why the hyperplanes of the PPS are helpful and impor-
tant in the process of efficiency evaluation of DMUs, as well as in
sensitivity and stability analysis (Jahanshahloo, Hosseinzadeh
Lotfi, Shoja, Sanei, & Tohidi, 2005a;Khanjani Shiraz, Charles, &
Jalalzadeh, 2014). Unfortunately, there are only a few papers in
existence which deal with hyperplanes of the PPS and their usage.
For instance, Jahanshahloo, Hosseinzadeh Lotfi, and Zohrehbandian
(2005b) proposed a method for obtaining the efficient frontier
using the integer programming model with binary variables. Yu,
Wei, Brockett, and Zhou (1996) studied the structural properties
of DEA efficient surfaces of the PPS under the generalized DEA
model. Jahanshahloo, Hosseinzadeh Lotfi, Zhiani Rezai, and Rezai
Balf (2007), Jahanshahloo, Shirzadi, and Mirdehghan (2009) and
Jahanshahloo, Hosseinzadeh Lotfi, and Akbarian (2010) developed
the algorithms which are used to find defining hyperplanes of
the PPS. Amatatsu and Ueda (2012) show an alternative use of
the efficient facets in DEA. Specifically, they indicate that once all
facets of the DEA technology is identified, decision maker is able
to estimate the potential changes in some inputs and outputs,
while fixing other inputs and outputs. Aparicio and Pastor (2014)
show least distance measures based on Hölder norms satisfy
neither weak nor strong monotonicity on the strongly efficient
frontier. They study Hölder distance functions and show why
strong monotonicity fails. Along this line, they provide a solution
for output-oriented models that allows assuring strong monotonic-
ity on the strongly efficient frontier. Aghayi and Gheleyj Beigi
(2014) show that the strong (weak) defining hyperplane is sup-
porting and there exists, at least, one affine independent set with
mþ s elements of extreme efficient DMUs (extreme efficient and
weak efficient virtual DMUs) where m and s are the number of
inputs and outputs, respectively. Nasrabadi, Dehnokhalaj, and
Soleimani-damaneh (2014) characterize a subset of the production
possibility set consisting of production points whose radial projec-
tion points lie on the same supporting hyperplane of the PPS. To this
end, they consider the CCR and BCC models and establish some the-
oretical results by utilizing linear programming-based techniques.
Determining such a subset of the PPS provides a means to perform
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sensitivity analysis of inefficient units. Aparicio and Pastor (2013)
show that the Russell output measure of technical efficiency based
on closest targets is strongly monotonic when dealing with a
full-dimensional strong efficient frontier. This is achieved by
replacing non-efficient faces, in the Pareto sense, by linear combi-
nations from the full-dimensional part of the efficient frontier, i.e.,
extending the efficient facets of the original DEA technology.

One of the main tasks in the DEA models is to find the efficiency
score of all (efficient and inefficient) DMUs. Generally speaking, cal-
culation of the efficiency score of the DMUs is investigated in terms
of the following aspects. The first aspect is the computational time.
It is important to get the results for all DMUs in a short time. The
second aspect is computational accuracy; i.e., to calculate the effi-
ciency score of inefficient DMUs with the least possible error. The
DEA models cannot satisfy both aspects simultaneously. They just
take into account one aspect according to the decision maker’s
point of view. In most situations, the aim of the decision maker is
not just to split the DMUs into inefficient and efficient classes.
The aim is, rather, to find ways to improving the efficiency score
of inefficient DMUs with the least possible energy, cost or other
inputs. It is clear that the calculation of the exact value of the effi-
ciency score of DMUs is very important. The original SBM model
evaluates the efficiency of DMUs referring to the furthest frontier
point within a given range. Whereas the classical SBM-model pro-
jects inefficient DMUs on the efficiency frontier. This may that this
projection be a remote point on the frontier. In other words, it is
possible that the obtained projection does not located to the closest
supporting hyperplane of PPS. This is problematic when aim is
removing the inefficiency. That is, when the projected point is
remote then removing the inefficiency is difficult.

In an effort to overcome this shortcoming, Tone proposed four
variants of the SBM model (Tone, 2010). Tone’s method (Tone,
2010) is very interesting, but he deals only with the efficient part
(strong hyperplanes) of the PPS, and ignores the inefficient fron-
tiers. On the other hand due to the number and structure of the
themes of the SBM model, proposed by Tone, computational time
increases considerably. When the efficiency score is computed in
all themes for a particular DMU, then the maximum value is
selected as the final efficiency score. The second theme consists
in finding the facets of the PPS. For this purpose an algorithm
was proposed by Tone (for more details, see Tone, 2010).
Unfortunately, creating a computer programming code for this
algorithm is impossible. That is why the mentioned algorithm
can be only used when the number of DMUs is small. In the third
theme, the clustering approach was proposed for using the facets’
algorithm, but the question is, what type of clustering is better.
Besides this, the obtained efficiency scores are local and restricted
to the same cluster, and it is not possible to obtain a global effi-
ciency score across the whole PPS. In the fourth theme, a random
direction approach is proposed as a way to find facets.
Unfortunately, the number of steps in random directions is
unknown and this can lead to undesirably long calculations.

In this paper, we first show that the results of Tone’s method on
the inefficient part of the PPS, are not better than those on the effi-
cient part. Next, we propose a new procedure for finding all facets
of the PPS without any clustering or random search. Our procedure
is computationally feasible for a large number of DMUs, and as the
result, it reduces the massive enumeration of facets.

The rest of this paper is organized as follows. The following sec-
tion contains the introductory definitions and preliminaries of the
paper. In this section, we review and discuss the Tone’s method.
Main paper’s contribution is included in Section 3, where we pro-
pose a method for finding strong supporting hyperplanes of the
PPS. The proposed procedure, along with three numerical examples,
is illustrated in Section 4. Section 5 contains a case study based on a
real data set. Its results allow better understanding of the proposed
algorithm. Conclusions as the last section summarize the given
results, and presents directions for future research in this field.

2. Preliminaries

Suppose we have n DMUs, where all DMUs (DMUj, j ¼ 1; . . . ;n)
have m inputs xij; i ¼ 1; . . . ;m and s outputs yrj; r ¼ 1; . . . ; s. We
denote the DMUj by (xj; yj), j ¼ 1; . . . ;n, and the input/output data
matrices by X ¼ ðxijÞ 2 Rm�n and Y ¼ ðyrjÞ 2 Rs�n, respectively, and
assume ðX;YÞ > ð0;0Þ. We define the PPS based on constant
returns to scale (CRS) as follows:

Tc ¼ ðx; yÞjx P
Xn

j¼1

kjxj; y 6
Xn

j¼1

kjyj; kj P 0; j ¼ 1; . . . ;n

( )

and when we deal with variable returns to scale (VRS) the PPS is
defined as:

Tv ¼ ðx;yÞjxP
Xn

j¼1

kjxj; y6
Xn

j¼1

kjyj;
Xn

j¼1

kj¼1; kj P0; j¼1; .. .;n

( )
;

in which k 2 Rn. We introduce non-negative input and output slacks
S� 2 Rm and Sþ 2 Rs to express x ¼ Xkþ S� and y ¼ Yk� Sþ. The
SBM model is defined as (Tone, 2001):

qo ¼min
1� 1

m

Pm
i¼1

s�
i

xio

1þ 1
s

Ps
r¼1

sþr
yro

s:t:
Xn

j¼1

kj xij þ s�i ¼ xio i ¼ 1; . . . ;m

Xn

j¼1

kj yrj � sþr ¼ yro r ¼ 1; . . . ; s

kj P 0 j ¼ 1; . . . ;n

s�i P 0 i ¼ 1; . . . ;m

sþr P 0 r ¼ 1; . . . ; s

ð1Þ

Definition 1 (Reference set). Let ðq�o; k�; S
��; Sþ�Þ be an optimal

solution of the model (1). The reference set for DMU ðxo; yoÞ is
defined by R ¼ fjjk�j > 0; j ¼ 1; . . . ;ng.

In this paper we consider the following models

max Uyo

s:t: Vxo ¼ 1
Uyj � Vxj � 0 j ¼ 1; . . . ;n
U P 0; V P 0

ð2Þ

max Uyo þ uo

s:t: Vxo ¼ 1
Uyj � Vxj þ uo � 0 j ¼ 1; . . . ;n

U P 0; V P 0; uofree

ð3Þ

max Uyo þ uo1 � uo2

s:t: Vxo ¼ 1
Uyj � Vxj þ uo1 � uo2 � 0 j ¼ 1; . . . ;n

U P 0; V P 0; uo1 P 0; uo2 P 0

ð4Þ

Definition 2 (CRS-efficient). DMUo is CRS-efficient, if there exists
at least one optimal solution (U�,V�) for (2), with ðU�;V�Þ > ð0;0Þ
such that U� yo=1, otherwise DMUo is CRS-inefficient.
Definition 3. (VRS-efficient).DMUo is VRS-efficient, if there exists
at least one optimal solution (U�,V�;u�o) for (3), with ðU�;V�Þ >
ð0;0Þ such that U� yo þ u�o=1, otherwise DMUo is VRS-inefficient.
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2.1. Tone’s method

In this section, we review Tone’s method (Tone, 2010). Let
ðxj; yjÞ; j ¼ 1; . . . ;K , be K DMUs in Tc (Tv). A linear combination of
these K DMUs with positive coefficients is defined as

xo; yoð Þ ¼
XK

j¼1

wjxj;
XK

j¼1

wjyj

 !
; wj > 0; j ¼ 1; . . . ;K ð5Þ

(if DMUj 2 Tv , then add
PK

j¼1wj ¼ 1).

Theorem 1. If ðxo; yoÞ defined by (5) is CRS-efficient (VRS-efficient),
then there exists a supporting hyperplane to the PPS at ðxo; yoÞ which
also supports PPS at ðxj; yjÞ; j ¼ 1; . . . ;K.
Definition 4 (Facet). The supporting hyperplane V�x� U�y � 0 is
a facet of the PPS.
Definition 5 (Friends). A subset {Pj1 ; . . . ; Pj k
} of fPjg ¼ fðxj; yjÞg;

j ¼ 1; . . . ;K is called friends if a linear combination with positive
coefficients of {Pj1 ; . . . ; Pj k

} is CRS-efficient (VRS-efficient).
Definition 6 (Maximal friends). A friends is called maximal, if any
addition of Pj (not in the friends) to the friends, is no more friends.
Definition 7 (Dominated friends). A friends is dominated by other
friends if the set of DMUs is a subset of the other’s.

The steps of Tone’s method are as follows.

Step 1. (Finding efficient DMUs): Utilize one of the non-radial
models (SBM or Additive) to find efficient DMUs.

Step 2. (Enumeration of facets): Enumerate all facets by applying
the following algorithm. This algorithm finds the maximal
friends of Pj ¼ ðxj; yjÞ; j ¼ 1: . . . ;K.

Algorithm:

Begin
For k ¼ 1 to K

Find maximum friends of Pk

Next k
Delete the dominated friends from the set of friends
Obtain the set of facets from the final set of friends

End
Subroutine find-maximal-friends of Pk

Exclude P1; . . . ; Pk�1 from the candidates of friends
Enumerate all friends of Pk

Remove dominated friends from the set of friends
Exit sub

Step 3. (Evaluation of inefficient DMUs): Let (xo; yo) be an inefficient
DMU. Evaluate its efficiency score as follows. For each
facetðhÞ;h ¼ 1; . . . ;H, solve the following fractional program:
qðhÞo ¼max
1� 1

m

Pm
i¼1

s�
i

xio

1þ 1
s

Ps
r¼1

sþr
yro

s:t:
X

j2RðhÞ
kj xij þ s�i ¼ xio i ¼ 1; . . . ;m

X
j2RðhÞ

kj yrj � sþr ¼ yro r ¼ 1; . . . ; s

kj P 0 j 2 RðhÞ
s�i P 0 i ¼ 1; . . . ;m

sþr P 0 r ¼ 1; . . . ; s

ð6Þ
RðhÞ is the set of efficient DMUs that span facetðhÞ. So, the

ncy score of DMUo is as qall
o ¼maxhfqðhÞo g.
2.2. Disadvantages of Tone’s methods

To reduce computational time and space consumption for large
scale problems, Tone proposed two modified versions of his
method: (1) Clustering DMUs. (2) Random search. In the first ver-
sion, using some clustering methods, the DMUs are classified in
clusters and the efficiency score of each DMU is computed in the
corresponding cluster. In the second version, using the random
directions around the efficient DMUs, an approximate method is
proposed for finding facets. But each one of these versions has
some drawbacks. For example, in version 1, no clustering is appro-
priate (some clusters do not give the desired solution) and the
obtained efficiency score is local, and not global. That means that
it is computed based on the same cluster. Because these clusters
are selected such a way that: (a) the number of them must be con-
siderable, and: (b) there must be at least one efficient DMU in each
cluster. Version 2 is an approximate method, and we do not know
the number of iterations for finding approximate directions. Since
in all these themes, firstly, we must find the facets of the PPS, and
then using the model (6), the efficiency score of DMUo must be
computed based on its effective facet. Note, that one has to solve
a model with mþ sþ 1 constraints, and kRðhÞk þmþ sþ 1 vari-
ables. Clearly, for large scale problems this is impossible. Besides,
Tone deals only with the efficient part of the frontier, and does
not consider the inefficient part. Now, suppose we have only one
efficient DMU, then the whole frontier of the PPS is inefficient.
What do we do in this situation? How do we deal with the situa-
tion where there is only one efficient DMU? Is it possible that
the results of Tone’s method on the inefficient part of the frontier
will be better than those on efficient part? In the next section,
we answer these questions. Also, we employ a multiplier form of
the models for finding the strong defining hyperplanes of the
PPS, which does not need clustering, or random search.

3. The new variation on the theme of the slacks-based measure

In this section we show that it is impossible that the results of
Tone’s method on the inefficient part of the frontier can be better
than those on the efficient part. Then we will propose our own
method.

Generally speaking, the supporting hyperplanes of the PPS are
divided into two classes. These are: the strong and weak support-
ing hyperplanes. We show that to improve the SBM model it is
enough to consider strong supporting hyperplanes. First we must
prove the following lemma.

Lemma 1. Consider the following linear programming problem

max d ¼ cx
s:t: Ax 6 b

x P 0
ð7Þ

in which c is a non-negative vector. Let d� be the optimal value of this
problem and suppose that a variable, say xk, is deleted from the decision
variables of the problem and d�new be the optimal value of the new prob-
lem. Then, d� P d�new.
Proof:. Let

S ¼ ðx1; . . . ; xk�1; xk; xkþ1; . . . ; xnÞ :
Xn

j¼1

ajxj 6 b; xj P 0

( )
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Snew ¼ ðx1; . . . ; xk�1; xkþ1; . . . ; xnÞ :
Xn

j¼1
j–k

ajxj 6 b; xj P 0

8><
>:

9>=
>;

SSnew ¼ ðx1; . . . ; xk�1;0; xkþ1; . . . ; xnÞ :
Xn

j¼1

ajxj 6 b; xj P 0

( )

where aj is the jth column of A. In fact S is the feasible region before
deleting xk; Snew is the feasible region after deleting xk and SSnew is
the projection of S on surface xk ¼ 0. Obviously, SSnew # S. Hence
S :¼ SSnew [ SS0new; SSnew \ SS0new ¼ /, where SS0new is the complement
of SSnew, and let ðx�; d�Þ and ðx�new; d

�
newÞ be the optimal solution of

the old, and the new problem, respectively. Therefore we have
two cases: �

� � �
Fig. 1. H1andH2 are defining. H is not defining.
(1) x 2 SSnew ) dnew ¼ d .
(2) x� R SSnew ) x� 2 SS0new ) d�new < d�.

Tone (2010) deals only with the efficient part of the PPS and he
ignores the inefficient part. The following theorem shows that the
optimal value of the objective function of model (6) on the ineffi-
cient part of the PPS is not better than its value on the strong part
of the PPS.

Theorem 2. The optimal value of the objective function of the model
(6) on the inefficient part of the PPS is not better than its value on the
strong part of the PPS.
Proof: Let H be an inefficient part of the PPS. It is clear that H
passes through at least one efficient DMU. Without loss of general-
ity, let A be this DMU. There are strong hyperplanes that are adja-
cent to H. These strong hyperplanes pass through A and some other
efficient DMUs. If we denote the PPS of the model (6) on the inef-
ficient part of the frontier by S0, and on the its adjacent efficient
hyperplane with S, then S0 # S. Now Lemma 1 completes the
proof. �
Remark:. According to the above theorem, we conclude that it is
enough to obtain strong hyperplanes of the PPS. But, if there exists
only one efficient DMU, then we do not have any strong hyper-
plane. In this case we just use this efficient DMU, instead of RðhÞ,
and run the model (6). In Section 5 we illustrate this using a
numerical example.
3.1. The proposed method

Now we are ready to present our proposed procedure. Note that
according to the above discussion, we just consider strong hyper-
planes. The subsequent theorems are taken from Jahanshahloo
et al. (2009).

Definition 8 (Affine independent). A collection of vectors
a1; . . . ; akþ1;of dimension n is called affine independent if
fa2 � a1; . . . ; akþ1 � a1g is linear independent.
Definition 9. H is a strong defining hyperplane of the PPS if it is
supporting and there exists at least one affine independent set
with mþ s elements of strongly efficient DMUs that lie on H.

In the evaluation of DMUj; j 2 f1; . . . ;ng, if ðU�;V�;u�oÞ is an opti-
mal solution of model (3) then U�y � V�xþ u�o ¼ 0 is a supporting
hyperplane on the PPS (Cooper et al., 1999). In Fig. 1, using model
(3), it can be seen that there are alternative optimal solutions
which define an infinite number of hyperplanes passing through
DMUo, of which only two hyperplanes (H1 and H2) are the defining
hyperplanes. Therefore, the number of supporting hyperplanes of
the PPS cannot be infinite.

Theorem 3. Suppose DMUk is strong efficient, Hk : U�y � V�x ¼ 0 is
a strong defining hyperplane of the PPS of Tc if and only if ðU�;V�Þ is
an extreme (basic feasible) optimal solution of model (2) in evaluating
DMUk with ðU�;V�Þ > ð0;0Þ.
Theorem 4. Suppose DMUk is strong efficient, Hk : U�y�V�xþu�o¼ 0
is a strong defining hyperplane of the PPS of Tv if, and only if,
ðU�;V�;u�o1;u

�
o2Þ is an extreme (basic feasible) optimal solution of (4)

in evaluating DMUk with ðU�;V�Þ > ð0;0Þ, where u�o ¼ u�o1 � u�o2 and
u�o1u�o2 ¼ 0.

Now the steps of the proposed procedure are as follows.

Step 1. Find strong defining hyperplanes of the PPS using the mul-
tiplier form of the CCR model.
Using the multiplier form of the CCR model, we find all effi-
cient DMUs. Let DMUo be a strong efficient DMU, hence in
all optimal solutions ðU�;V�Þ > ð0;0Þ. Therefore, the bind-
ing strong defining hyperplane is like h : U�y � V�x ¼ 0.
Then, we examine which other efficient DMUs are active
in h. That is, h passes through them. All such DMUs are
co-plane and make facet h. We repeat this step for all effi-
cient DMUs to find all strong defining hyperplanes.

Step 2. Find the efficiency score of the inefficient DMUs.
Let DMUo be inefficient. We find its distance from all
strong defining hyperplanes. Consider the strong defining
hyperplane which has the least distance to DMUo and
solve the model (6) on this hyperplane. The obtained value
of the objective function is the efficiency score of DMUo.
Remark:. The calculations related to finding an effective, strong
defining hyperplane in efficiency of DMUo is as follows:

dh ¼
j P0DMUo

������!
: n!hj

j n!hj

dh� ¼min
h

dh

in which P0 is an arbitrary point of the strong defining hyperplane h,

jP0DMUoj
������!

is a vector from DMUo to P0; n
!

h ¼ ðU;�VÞ is a normal vec-

tor of the strong defining hyperplane, jn
!

hj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ið�v iÞ2 þ
P

ju
2
j

q
is
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the norm of n
!

h, ‘‘.’’ shows inner product and h� is the effective strong
defining hyperplane in efficiency of DMUo. For more information
about the least distance, see Briec (1998), Coelli (1998), Briec and
Lemaire (1999a), Briec and Lesourd (1999b), Frei and Harker
(1999), Cherchye and Van Puyenbroeck (2001), Portela, Borges,
and Thanassoulis (2003), Baek and Lee (2009), Amirteimoori and
Kordrostami (2010) and Ando, Kai, Maeda, and Sekitani (2012).
4. Numerical examples

In this section, we examine three numerical examples using the
proposed model. The examples were taken from Cooper et al.
(1999). Through this section and the next section we compute
the coefficients of the hyperplanes using the Maple software and
fractions are used because if we use decimals then due to
round-off errors, some coefficients are lost (became zero).

Example 1. This example shows a situation where all surfaces of
the PPS are inefficient.

Consider Table 1. Here we have 8 DMUs, A to H, with one input x
and one output y. In this example only one DMU, B, is efficient
(Pareto efficient). Here, we do not have a strong hyperplane but
there is one strong efficient DMU. Thus, we employ this DMU for
our calculations without finding the hyperplane.
Table 1
Data of Example 1.

DMU A B C D

Input x 2 3 3 4
Output y 1 3 2 3

Table 2
Efficiency scores of Example 1 by SBM and the new procedure.

DMU SBM Reference(s)

A 0.6667 B
B 1.0000 B
C 0.8000 B
D 0.8571 B
E 0.8889 B
F 0.5714 B
G 0.6667 B
H 0.7692 B

Table 3
Data of Example 2.

DMU A B C

Input x1 4 7 8
x2 3 3 1

Output y 1 1 1

Table 4
Efficiency scores of Example 2 by the new procedure.

DMU SBM Rreference(s) Efficiency New

A 0.8333 D inefficient 0.92
B 0.6190 D inefficient 0.77
C 1.0000 C efficient 1.00
D 1.0000 D efficient 1.00
E 1.0000 E efficient 1.00
F 0.9000 C inefficient 0.90
G 0.8333 C inefficient 0.83
H 0.7333 C inefficient 0.85
Table 2 displays the results. As we see in this table, the pro-
posed model has improved the efficiency score of each inefficient
DMU.

Example 2. This example shows the situation in which the frontier
of the PPS includes both the efficient and inefficient parts.

Consider Table 3. This table contains 8 DMUs, A to H, with two
inputs (x1; x2) and one output y. The results are shown in the
Table 4. In this example, F and G are weakly efficient. Note, that
according to Theorem 2, the efficiency score of these two DMUs
has not been improved in the new procedure. Here, the strong
defining hyperplanes are ED : y� 2499999

5000000 x1 � 1249999
1250000 x2 ¼ 0 and

CD : y� 1
12 x1 � 1

3 x2 ¼ 0.
For example, to compute the efficiency score of H, we calculated

its distance to all strong defining hyperplanes and obtained
dCD ¼ 12:05; dED ¼ 20:15. Hence, dCD ¼ 12:05 is the least distance.
Thus CD is the effective strong defining hyperplane in the efficiency
score of H, and we implemented the model (6) on this hyperplane
for H, and found that RðCDÞ ¼ fC;Dg and q�H ¼ 0:8571.

Example 3. Using the new procedure, we obtained the same
results as Tone’s method did, but more easily and simpler than if
we used Tone’s method. Note that we do not need to cluster DMUs,
or do random research. This example shows this fact. Consider
Table 5.
E F G H

5 5 6 8
4 2 3 5

Efficiency New procedure Reference(s)

inefficient 0.7500 B
efficient 1.0000 B
inefficient 0.8333 B
inefficient 0.8750 B
inefficient 0.9000 B
inefficient 0.7000 B
inefficient 0.7500 B
inefficient 0.8125 B

D E F G H

4 2 10 12 10
2 4 1 1 1.5
1 1 1 1 1

procedure Reference(s) Effective hyperplane

31 D, E ED
42 C, D CD
00 C –
00 D –
00 E –
00 C CD
33 C CD
71 C, D CD



Table 6
Efficiency scores of Example 3 by SBM and new procedure.

DMU SBM Reference(s) Efficiency New procedure Reference(s) Effective hyperplane

A 1.0000 A strong efficient 1.0000 A –
B 1.0000 B strong efficient 1.0000 B –
C 0.8265 B,L inefficient 0.8751 D BDL
D 1.0000 D strong efficient 1.0000 D –
E 0.7277 B,L inefficient 0.7682 A ADL
F 0.6857 A,L inefficient 0.7265 D ADL
G 0.8765 B,L inefficient 0.9369 D BDL
H 0.7714 L inefficient 0.8092 D BDL
I 0.9016 A,L inefficient 0.9212 A,D,L ADL
J 0.7653 B,L inefficient 0.8103 D BDL
K 0.8619 B,L inefficient 0.8889 A,D ADL
L 1.0000 L strong efficient 1.0000 L –

Table 7
Inputs and outputs for 25 bank branches.

x1 x2 x3 x4 y1 y2 y3

Min 3050 3145 3222 3123 5468 4999 4521
MAX 7825 4988 4632 5000 10000 9821 9941
Mean 4182.6 4071.92 3960.56 4055.28 7602.28 7130.84 7383.08
Median 3980 4012 3989 3999 7415 7312 7415
St.dev 927.1577 561.7359 404.4597 614.7520 1447.706 1404.374 1570.330

Table 5
Data of Example 3.

DMU A B C D E F G H I J K L

Input x1 20 19 25 27 22 55 33 31 30 50 53 38
x2 151 131 160 168 158 255 235 206 244 268 306 273

Output y1 100 150 160 180 94 230 220 152 190 250 260 250
y2 90 50 55 72 66 90 88 80 100 100 147 133
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According to this table we have 12 DMUs. Each one uses two
inputs to produce two outputs. Table 6 shows the results obtained.
As we see, A;B;D and L are efficient DMUs, while the other DMUs
are inefficient. Note, that in the new procedure, the reference set
for some inefficient DMUs are different from those determined
by the SBM model. Besides, the efficiency score of the inefficient
DMUs has been increased in the new procedure. In this example
the strong defining hyperplanes are ADL : 1

300 y1 þ 3
400 y2 � 1

400 x1�
31

5000 x2 ¼ 0 and BDL : 39
10000 y1 þ 41

5000 y2 � 61
10000 x1 � 34

5000 x2 ¼ 0.
Here we take F into consideration. To calculate the efficiency

score of this DMU first we compute its distance to all strong defin-
ing hyperplanes. These distances are dADL ¼ 41:15 and dBDL ¼ 60:69.
So dADL ¼ 41:15 is the least distance. Hence ADL is the effective
strong defining hyperplane in the efficiency score of F and there-
fore we implement the model (6) in this hyperplane for F. Here
RðADLÞ ¼ fA;D; Lg and q�F ¼ 0:7265.
5. Application of the proposed procedure

In this section, a case study is presented in order to clarify the
advantage of the approach. The case study is related to the effi-
ciency evaluation of 25 branches of Refah Bank, Iran. There are 4
inputs as suspicious receivables cost, personnel cost, capital cost
and branch equipment cost, respectively, and 3 outputs as
incomes, deposits and banking facilities, respectively. Data gath-
ered from the branches are shown in Table 7. For convenience,
we use x1 to x4 and y1 to y3 instead of their actual names.

In order to compute the efficiency scores of DMUs, using the pro-
posed model, first we find the efficient DMUs. Here we employed
the multiplier form of the CCR model and found that DMUs
A;D; F;K;O; P;Q ;R; S and V are efficient DMUs. The strong defining
hyperplanes, and the co-plane efficient DMUs are as follows:

RQD : 1
100000000000 y1 þ 2951268

63059137391 y2 þ 43750
67102035 y3 � 1

100000000000 x1�
1

100000000000 x2 � 12
40275 x3 � 1

100000000000 x4 ¼ 0
RPOA : 9

97180 y1 þ 1
100000000000 y2 þ 1

100000000000 y3 � 1
100000000000 x1�

1
100000000000 x2 � 1

100000000000 x3 � 192307
710000000 x4 ¼ 0

ROKD : 31585093079
440005891319810 y1 þ 1718064779

44000589131981 y2 þ 1
100000000000 y3�

28902197530
440005891319810 x1 � 1

100000000000 x2 � 187368132838
880011782639620 x3 � 1

100000000000 x4 ¼ 0
VPOF : 217609584

20316628645230 y1þ 133556339
1693052387102 y2þ 173119134

4063325729046 y3� 1
100000000000

x1 � 1
100000000000 x2 � 1

100000000000 x3 � 1
3470 x4 ¼ 0

SD : 66272956
695315061150 y1 þ 6979833

347657530575 y2 þ 1
100000000000 y3 � 1

100000000000 x1�
4999999

15725000000 x2 � 1
100000000000 x3 � 1

100000000000 x4 ¼ 0
VRQKA : 6830164

144591468445 y1 þ 1
100000000000 y2 þ 4454715

57836587378 y3 � 9999998811
34220000000000

x1 � 1
100000000000 x2 � 1

100000000000 x3 � 1
100000000000 x4 ¼ 0

To compute the efficiency score of inefficient DMUs, based on
the proposed approach, first, we obtain the distance from each
inefficient DMU to all the above strong defining hyperplanes.
Then we find the minimum value in these distances. This
minimum value determines which hyperplane is effective in
the efficiency score of the DMU, and we employ this hyperplane
for solving the model (6), in order to obtain the efficiency score
of the DMU. Note that in the proposed model the effective
strong defining hyperplane is obtained using simple mathemati-
cal calculations and then the model (6) is used just one time.
Whereas in Tone’s model the model (6) is used for all facets of
the PPS and then the maximum value is used as the efficiency
score of the DMU. For instance, in order to find the efficiency
score of B we find its distance from all the strong supporting
hyperplanes.



Table 8
Efficiency scores of 25 bank branches by SBM and new procedure.

DMU SBM Reference(s) Efficiency New procedure Reference(s) Effective hyperplane

A 1.0000 A strong efficient 1.0000 A –
B 0.6199 D inefficient 0.7515 D,Q RQD
C 0.6180 D inefficient 0.7532 K,Q,V VRQKA
D 1.0000 D strong efficient 1.0000 D –
E 0.7334 D,R inefficient 0.8061 D,Q,R RQD
F 1.0000 F strong efficient 1.0000 F –
G 0.9139 D,O,R inefficient 0.9450 D,O ROKD
H 0.6440 D, F inefficient 0.7664 F,P,V VOPF
I 0.7538 R,k,O inefficient 0.8579 A,R VRQKA
J 0.6599 D inefficient 0.7296 D,Q,R RQD
K 1.0000 K strong efficient 1.0000 K –
L 0.6101 D inefficient 0.7505 Q, R RQD
M 0.6214 D,R inefficient 0.6783 K,O,R ROKD
N 0.7687 D inefficient 0.8573 D,Q RDQ
O 1.0000 O strong efficient 1.0000 O –
P 1.0000 P strong efficient 1.0000 P –
Q 1.0000 Q strong efficient 1.0000 Q –
R 1.0000 R strong efficient 1.0000 R –
S 1.0000 S strong efficient 1.0000 s –
T 0.7509 D,O,R inefficient 0.8669 K,R ROKD
U 0.8254 F,O,R inefficient 0.8428 A,P,R RPOA
V 1.0000 V strong efficient 1.0000 V –
W 0.9442 D,K,Q,R,V inefficient 0.9701 V,D, A VRQKA
X 0.5020 D inefficient 0.5673 D,Q RQD
Y 0.8483 D,F,O,R inefficient 0.9121 D,R,O ROKD
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dVRQKA¼1254:23; dSD¼2832:08; dROKD¼1858:84 dRPOA¼2134:88;
dRQD ¼ 97:99; dVOPF ¼ 2373:05

That is, dRQD ¼ 97:99 is the least distance. Hence, the effective
strong defining hyperplane in the efficiency score of DMUB is
RQD, and we solve the model (6) on this hyperplane, and
RðRQDÞ ¼ fR;Q ;Dg and q�B ¼ 0:7515. We use the same method to
find the efficiency scores of the other inefficient DMUs. Table 8 dis-
plays the efficiency scores of 25 bank branches. Columns two and
three of this Table show the efficiency score of each DMU, calcu-
lated by the SBM and its reference set, respectively. Column four
shows the type of efficiency for each DMU. Columns five, six and
seven of Table 8 show the efficiency score obtained by the pro-
posed model, reference set and effective strong defining hyper-
planes in the efficiency of each DMU, respectively. As we see, the
efficiency scores obtained by the proposed model is greater than
those obtained by the SBM model.
6. Conclusion

Decision makers (DMUs) needs some strategies to improve per-
formance of their organization. One of them is determining ineffi-
cient DMUs. There are several DEA models for this purpose. Most of
DEA models, such as classical SBM model, projects inefficient DMU
on the frontier of PPS. It may that this projection may lead to a
remote point on the frontier and as a result removing the ineffi-
ciency may be fail. Here, we introduced a method for the analysis
and improvement of the efficiency scores of DMUs in the SBM
model. We also proposed a new procedure for finding all strong
defining hyperplanes of the PPS. The proposed method is easier
than Tone’s method, and does not need any clustering of DMUs
or any random search. In comparison with Tone’s method, the pro-
posed approach can be easily implemented. This allows the appli-
cation of the proposed method for large scale problems. The
applicability and advantages of the algorithms were illustrated
on several numerical examples that were completed by a case
study with a real economic background.

The limitation of our method is that in the first stage the mul-
tiplier model is employed to find all supporting hyperplanes.
However, this strategy increase simplicity of the method, but it
needs to run multiplier form of the CCR-model and model (6).
Hence the computational time is increased. On the other hance,
due to importance of strong supporting hyperplanes it is necessary
to use softwares which use fractional coefficients to avoid loss
data.

Further research in this field can be focused on the wider appli-
cations of the proposed algorithms, as well as comparison of their
results with other DEA models. Another research direction could be
the extension of the proposed procedures for the analysis and
ranking of efficient DMUs. Besides, strong supporting hyperplanes
play an important role in efficiency estimation. So far, researchers
just use them for efficiency analysis and less attention pay to find-
ing them. Therefore as an another future research field, proposing
some new simple methods for finding strong supporting hyper-
planes is suggested.
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